Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1352318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38576793

RESUMO

Introduction: Bacteria of genus Pectobacterium, encompassing economically significant pathogens affecting various plants, includes the species P. betavasculorum, initially associated with beetroot infection. However, its host range is much broader. It causes diseases of sunflower, potato, tomato, carrots, sweet potato, radish, squash, cucumber, and chrysanthemum. To explain this phenomenon, a comprehensive pathogenomic and phenomic characterisation of P. betavasculorum species was performed. Methods: Genomes of P. betavasculorum strains isolated from potato, sunflower, and artichoke were sequenced and compared with those from sugar beet isolates. Metabolic profiling and pathogenomic analyses were conducted to assess virulence determinants and adaptation potential. Pathogenicity assays were performed on potato tubers and chicory leaves to confirm in silico predictions of disease symptoms. Phenotypic assays were also conducted to assess the strains ability to synthesise homoserine lactones and siderophores. Results: The genome size ranged from 4.675 to 4.931 kbp, and GC % was between 51.0% and 51.2%. The pangenome of P. betavasculorum is open and comprises, on average, 4,220 gene families. Of these, 83% of genes are the core genome, and 2% of the entire pangenome are unique genes. Strains isolated from sugar beet have a smaller pangenome size and a higher number of unique genes than those from other plants. Interestingly, genomes of strains from artichoke and sunflower share 391 common CDS that are not present in the genomes of other strains from sugar beet or potato. Those strains have only one unique gene. All strains could use numerous sugars as building materials and energy sources and possessed a high repertoire of virulence determinants in the genomes. P. betavasculorum strains were able to cause disease symptoms on potato tubers and chicory leaves. They were also able to synthesise homoserine lactones and siderophores. Discussion: The findings underscore the adaptability of P. betavasculorum to diverse hosts and environments. Strains adapted to plants with high sugar content in tissues have a different composition of fatty acids in membranes and a different mechanism of replenishing nitrogen in case of deficiency of this compound than strains derived from other plant species. Extensive phenomics and genomic analyses performed in this study have shown that P. betavasculorum species is an agronomically relevant pathogen.

2.
Front Plant Sci ; 15: 1323790, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38332771

RESUMO

Introduction: Pectobacterium cacticida was identified as the causative agent of soft rot disease in cacti. Due to a high potential of spread in the face of global warming, the species poses a significant threat to horticultural and crop industry. The aim of this study was to revise the genomic, physiology and virulence characteristics of P. cacticida and update its phylogenetic position within the Pectobacterium genus. Methods: Whole genome sequences of five P. cacticida strains were obtained and subjected to comprehensive genomic and phylogenomic data analyses. We assessed the presence of virulence determinants and genes associated with host and environmental adaptation. Lipidomic analysis, as well as biochemical and phenotypic assays were performed to correlate genomic findings. Results: Phylogenomic analysis revealed that P. cacticida forms a distinct lineage within the Pectobacterium genus. Genomic evaluation uncovered 516 unique proteins, most of which were involved in cellular metabolism. They included genes of carbohydrate metabolism and transport and ABC transporters. The main differing characteristics from other Pectobacterium species were the lack of a myo-inositol degradation pathway and the presence of the malonate decarboxylase gene. All tested strains were pathogenic towards Opuntia spp., chicory, Chinese cabbage, and potato, but exhibited only mild pathogenicity towards carrot. Discussion: This study sheds light into the genomic characteristics of P. cacticida and highlights the pathogenic potential of the species. Unique genes found in P. cacticida genomes possibly enhance the species' survival and virulence. Based on phylogenomic analyses, we propose the reclassification of P. cacticida to a new genus, Alcorniella comb. nov.

3.
Microbiol Spectr ; 12(1): e0249023, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38063383

RESUMO

IMPORTANCE: Increasing antibiotic resistance and the lack of new antibiotic-like compounds to combat bacterial resistance are significant problems of modern medicine. The development of new alternative therapeutic strategies is extremely important. Antimicrobial blue light (aBL) is an innovative approach to combat multidrug-resistant microorganisms. aBL has a multitarget mode of action; however, the full mechanism of aBL antibacterial action requires further investigation. In addition, the potential risk of resistance development to this treatment should be considered.


Assuntos
Anti-Infecciosos , Escherichia coli , Escherichia coli/genética , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Resistência Microbiana a Medicamentos , Testes de Sensibilidade Microbiana
4.
Molecules ; 28(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38005278

RESUMO

Bacillus species produce different classes of antimicrobial and antioxidant substances: peptides or proteins with different structural compositions and molecular masses and a broad range of volatile organic compounds (VOCs), some of which may serve as biomarkers for microorganism identification. The aim of this study is the identification of biologically active compounds synthesized by five Bacillus species using gas chromatography coupled to mass spectrometry (GC-MS). The current study profoundly enhances the knowledge of antibacterial and antioxidant metabolites ensuring the unambiguous identification of VOCs produced by some Bacillus species, which were isolated from vegetable samples of potato, carrot, and tomato. Phylogenetic and biochemical studies were used to identify the bacterial isolates after culturing. Phylogenetic analysis proved that five bacterial isolates BSS12, BSS13, BSS16, BSS21, and BSS25 showed 99% nucleotide sequence similarities with Bacillus safensis AS-08, Bacillus cereus WAB2133, Bacillus acidiproducens NiuFun, Bacillus toyonesis FORT 102, and Bacillus thuringiensis F3, respectively. The crude extract was prepared from bacterial isolates to assess the antibiotic resistance potency and the antimicrobial potential against various targeted multidrug-resistant strains, including yeast strains such as Candida albicans, Candida krusei, and bacterial strains of Enterococcus hirae, Escherichia coli, Klebsiella aerogenes, Klebsiella pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus group B, Streptococcus mutans, Shigella sonnei, Salmonella enteritidis, Serratia marcescens, Pseudomonas aeruginosa, and Proteus vulgaris. GC-MS analysis of bacterial strains found that VOCs from Bacillus species come in a variety of chemical forms, such as ketones, alcohols, terpenoids, alkenes, etc. Overall, 69 volatile organic compounds were identified from five Bacillus species, and all five were found to share different chemical classes of volatile organic components, which have a variety of pharmacological applications. However, eight antibacterial compounds with different concentrations were commonly found in all five species: acetoin, acetic acid, butanoic acid, 2-methyl-, oxime-, methoxy-phenyl, phenol, 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester, nonanoic acid, and hexadecanoic acid, methyl. The present study has demonstrated that bacterial isolates BSS25, BSS21, and BSS16 display potent inhibitory effects against Candida albicans, while BSS25, BSS21, and BSS13 exhibit the ability to restrain the growth and activity of Candida krusei. Notably, BSS25 and BSS21 are the only isolates that demonstrate substantial inhibitory activity against Klebsiella aerogenes. This disparity in inhibitory effects could be attributed to the higher concentrations of acetoin in BSS25 and BSS21, whereas BSS16 and BSS13 have relatively elevated levels of butanoic acid, 2-methyl-. Certainly, the presence of acetoin and butanoic acid, 2-methyl-, contributes to the enhanced antibacterial potential of these bacterial strains, in conjunction with other organic volatile compounds and peptides, among other factors. The biology and physiology of Bacillus can be better understood using these results, which can also be used to create novel biotechnological procedures and applications. Moreover, because of its exceptional ability to synthesize and produce a variety of different antibacterial compounds, Bacillus species can serve as natural and universal carriers for antibiotic compounds in the form of probiotic cultures and strains to fight different pathogens, including mycobacteria.


Assuntos
Anti-Infecciosos , Bacillus , Enterobacter aerogenes , Compostos Orgânicos Voláteis , Antibacterianos/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos Voláteis/análise , Antioxidantes/farmacologia , Ácido Butírico/farmacologia , Acetoína/análise , Filogenia , Anti-Infecciosos/farmacologia , Escherichia coli , Bacillus cereus , Peptídeos/farmacologia , Testes de Sensibilidade Microbiana
5.
Chem Biol Interact ; 386: 110783, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37884182

RESUMO

Alzheimer's disease (AD) pathogenesis has been attributed to extracellular aggregates of amyloid ß (Aß) plaques and neurofibrillary tangles in the human brain. It has been reported that butyrylcholinesterase (BChE) also accumulates in the brain Aß plaques in AD. We have previously found that the BChE substitution in 5'UTR caused an in-frame N-terminal extension of 41 amino acids of the BChE signal peptide. The resultant variant with a 69 amino acid signal peptide, designated N-BChE, could play a role in AD development. Here, we report that the signal sequence of the BChE, if produced in an extended 69 aa version, can self-aggregate and could form seeds that enhance amyloid fibril formation in vitro in a dose-dependent manner and create larger co-aggregates. Similar phenomena could have been observed in the human brain if such an extended form of the signal sequence had been, in some circumstances, translated.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Humanos , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Butirilcolinesterase/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Sinais Direcionadores de Proteínas
6.
Front Microbiol ; 14: 1211447, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396391

RESUMO

The intake of psychobiotic bacteria appears to be a promising adjunct to neuropsychiatric treatment, and their consumption may even be beneficial for healthy people in terms of mental functioning. The psychobiotics' mechanism of action is largely outlined by the gut-brain axis; however, it is not fully understood. Based on very recent studies, we provide compelling evidence to suggest a novel understanding of this mechanism: bacterial extracellular vesicles appear to mediate many known effects that psychobiotic bacteria exert on the brain. In this mini-review paper, we characterize the extracellular vesicles derived from psychobiotic bacteria to demonstrate that they can be absorbed from the gastrointestinal tract, penetrate to the brain, and carry the intracellular content to exert beneficial multidirectional action. Specifically, by regulating epigenetic factors, extracellular vesicles from psychobiotics appear to enhance expression of neurotrophic molecules, improve serotonergic neurotransmission, and likely supply astrocytes with glycolytic enzymes to favor neuroprotective mechanisms. As a result, some data suggest an antidepressant action of extracellular vesicles that originate even from taxonomically remote psychobiotic bacteria. As such, these extracellular vesicles may be regarded as postbiotics of potentially therapeutic application. The mini-review is enriched with illustrations to better introduce the complex nature of brain signaling mediated by bacterial extracellular vesicles and indicates knowledge gaps that require scientific exploration before further progress is made. In conclusion, bacterial extracellular vesicles appear to represent the missing piece of the puzzle in the mechanism of action of psychobiotics.

7.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511194

RESUMO

Familial hypercholesterolemia (FH) is an autosomal-dominant disorder caused mainly by substitutions in the low-density lipoprotein receptor (LDLR) gene, leading to an increased risk of premature cardiovascular diseases. Tremendous advances in sequencing techniques have resulted in the discovery of more than 3000 variants of the LDLR gene, but not all of them are clinically relevant. Therefore, functional studies of selected variants are needed for their proper classification. Here, a single-cell, kinetic, fluorescent LDL uptake assay was applied for the functional analysis of LDLR variants in a model of an LDLR-deficient human cell line. An LDLR-defective HEK293T cell line was established via a CRISPR/Cas9-mediated luciferase-puromycin knock-in. The expressing vector with the LDLR gene under the control of the regulated promoter and with a reporter gene has been designed to overproduce LDLR variants in the host cell. Moreover, an LDLR promoter-luciferase knock-in reporter system has been created in the human cell line to study transcriptional regulation of the LDLR gene, which can serve as a simple tool for screening and testing new HMG CoA reductase-inhibiting drugs for atherosclerosis therapy. The data presented here demonstrate that the obtained LDLR-deficient human cell line HEK293T-ldlrG1 and the dedicated pTetRedLDLRwt expression vector are valuable tools for studying LDL internalization and functional analysis of LDLR and its genetic variants. Using appropriate equipment, LDL uptake to a single cell can be measured in real time. Moreover, the luciferase gene knock-in downstream of the LDLR promotor allows the study of promoter regulation in response to diverse conditions or drugs. An analysis of four known LDLR variants previously classified as pathogenic and benign was performed to validate the LDLR-expressing system described herein with the dedicated LDLR-deficient human cell line, HEK293T-ldlrG1.


Assuntos
Aterosclerose , Hiperlipoproteinemia Tipo II , Receptores de LDL , Humanos , Células HEK293 , Hiperlipoproteinemia Tipo II/genética , Lipoproteínas LDL , Receptores de LDL/genética , Receptores de LDL/metabolismo
8.
Anal Bioanal Chem ; 415(16): 3167-3176, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37160422

RESUMO

Despite the abundance of available cell lines, nearly 70% of all recombinant therapeutic proteins today are produced in Chinese hamster ovary (CHO) cells. The impact of protein overproduction on the secretion of exosomes by CHO cells has been investigated here. Increased secretion of extracellular vesicles (EVs) by protein overexpressing CHO cells was demonstrated with protein content assay, nanoparticle tracking analysis, and capillary electrophoresis. Our results revealed that a protein overproduction might induce EVs secretion, which might be accompanied by the sequestration and loading of overexpressed proteins into the exosomes. These findings are of vital importance for the manufacturing of therapeutics in CHO expression systems due to the risk of product loss during downstream processing of culture medium as well as the application of exosomes as nanocarriers of therapeutic proteins. The study indicates also the importance of culturing process control.


Assuntos
Exossomos , Vesículas Extracelulares , Cricetinae , Animais , Cricetulus , Exossomos/metabolismo , Células CHO , Proteínas Recombinantes/metabolismo , Vesículas Extracelulares/metabolismo
9.
Front Microbiol ; 14: 1111809, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180226

RESUMO

Thermophiles from extreme thermal environments have shown tremendous potential regarding ecological and biotechnological applications. Nevertheless, thermophilic cyanobacteria remain largely untapped and are rarely characterized. Herein, a polyphasic approach was used to characterize a thermophilic strain, PKUAC-SCTB231 (hereafter B231), isolated from a hot spring (pH 6.62, 55.5°C) in Zhonggu village, China. The analyses of 16S rRNA phylogeny, secondary structures of 16S-23S ITS and morphology strongly supported strain B231 as a novel genus within Trichocoleusaceae. Phylogenomic inference and three genome-based indices further verified the genus delineation. Based on the botanical code, the isolate is herein delineated as Trichothermofontia sichuanensis gen. et sp. nov., a genus closely related to a validly described genus Trichocoleus. In addition, our results suggest that Pinocchia currently classified to belong to the family Leptolyngbyaceae may require revision and assignment to the family Trichocoleusaceae. Furthermore, the complete genome of Trichothermofontia B231 facilitated the elucidation of the genetic basis regarding genes related to its carbon-concentrating mechanism (CCM). The strain belongs to ß-cyanobacteria according to its ß-carboxysome shell protein and 1B form of Ribulose bisphosphate Carboxylase-Oxygenase (RubisCO). Compared to other thermophilic strains, strain B231contains a relatively low diversity of bicarbonate transporters (only BicA for HCO3- transport) but a higher abundance of different types of carbonic anhydrase (CA), ß-CA (ccaA) and γ-CA (ccmM). The BCT1 transporter consistently possessed by freshwater cyanobacteria was absent in strain B231. Similar situation was occasionally observed in freshwater thermal Thermoleptolyngbya and Thermosynechococcus strains. Moreover, strain B231 shows a similar composition of carboxysome shell proteins (ccmK1-4, ccmL, -M, -N, -O, and -P) to mesophilic cyanobacteria, the diversity of which was higher than many thermophilic strains lacking at least one of the four ccmK genes. The genomic distribution of CCM-related genes suggests that the expression of some components is regulated as an operon and others in an independently controlled satellite locus. The current study also offers fundamental information for future taxogenomics, ecogenomics and geogenomic studies on distribution and significance of thermophilic cyanobacteria in the global ecosystem.

10.
Int J Mol Sci ; 24(10)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37240092

RESUMO

The measurement of oxygen consumption is an important element in the understanding of an organism's metabolic state. Oxygen is also a phosphorescence quencher, which allows the evaluation of phosphorescence emitted by oxygen sensors. Two Ru(II)-based oxygen-sensitive sensors were used to study the effect of chemical compounds [(1) = [CoCl2(dap)2]Cl, and (2) = [CoCl2(en)2]Cl (AmB = amphotericin B) against reference and clinical strains of Candida albicans. The tris-[(4,7-diphenyl-1,10-phenanthroline)ruthenium(II)] chloride ([Ru(DPP)3]Cl2) (Box) adsorbed onto the DavisilTM silica gel was embedded in the silicone rubber Lactite NuvaSil® 5091 and the coating on the bottom of 96-well plates. The water-soluble oxygen sensor (BsOx = tris-[(4,7-diphenyl-1,10-phenanthrolinedisulphonic acid disodium)ruthenium(II)] chloride 'x' hydrate = {Ru[DPP(SO3Na)2]3}Cl2 = water molecules were omitted in the BsOx formula) was synthesized and characterized by RP-UHPLC, LCMS, MALDI, elemental analysis, ATR, UV-Vis, 1H NMR, and TG/IR techniques. The microbiological studies were performed in the environment of RPMI broth and blood serum. Both Ru(II)-based sensors turned out to be useful in the study of the activity of Co(III) complexes and the commercial antifungal drug amphotericin B. In addition, a new activity of the oxygen sensor, the soluble Ru(II) complex BsOx, was demonstrated, which is a mixture with amphotericin B that caused a significant increase in its antifungal activity. Thus, it is also possible to demonstrate the synergistic effect of compounds active against the microorganisms under study.


Assuntos
Antifúngicos , Rutênio , Antifúngicos/farmacologia , Anfotericina B/farmacologia , Rutênio/farmacologia , Rutênio/química , Cloretos , Água/química , Oxigênio/química
11.
Obes Surg ; 33(4): 1228-1236, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36829082

RESUMO

INTRODUCTION: Obesity is associated with disturbed gut microbiota homeostasis that translates into altered intestinal and blood metabolite profiles. The long-chain fatty acid (LCFA) may be absorbed in the intestine, but until now, their composition in intestinal contents of patients with obesity has not been studied. The aim of the present study was to verify whether obesity is related to any changes in fecal LCFA content and whether intestinal LCFA content may be associated with the health status of patients with obesity. METHODS: The fatty acid composition has been studied in stool samples obtained from 26 patients with morbid obesity and 25 lean subjects by gas chromatography-mass spectrometry. The dietary habits were assessed using the Food Frequency Questionnaire (FFQ-6). RESULTS: Our results show for the first time that lean subjects and patients with obesity differ in their stool LCFA profiles. The levels of most n-3 polyunsaturated fatty acids (PUFAs) and n-6 PUFAs were significantly higher in fecal samples from people with obesity than in those from lean controls. CONCLUSIONS: Based on the current knowledge, we have defined three hypotheses that may explain proving the cause-and-effect relationships observed differences in fecal LCFA profiles between patients with obesity and lean subjects. They may be related to alterations in fat digestion and/or LCFA absorption and diet. However, proving the cause-and-effect relationships requires further research.


Assuntos
Ácidos Graxos Ômega-3 , Obesidade Mórbida , Humanos , Conteúdo Gastrointestinal , Obesidade Mórbida/cirurgia , Ácidos Graxos Insaturados , Ácidos Graxos/metabolismo
12.
Pathogens ; 11(7)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35889973

RESUMO

Bacteria of the genus Pectobacterium are globally occurring pathogens that infect a broad spectrum of plants. The plant cell wall degrading enzymes allow them to cause diseases like soft rot and blackleg. Worldwide trade and exchange of plant material together with the accompanying microorganisms contributed to the rapid spread and consequently the acquisition of new traits by bacteria. The 161 pectinolytic strains were isolated from symptomless vegetables and ornamental plants acquired from Polish and foreign local food markets. All strains except four Dickeya isolates were identified as belonging to the Pectobacterium genus by PCR with species-specific primers and recA gene sequencing. The newly isolated bacteria were assigned to eight species, P. versatile (50 strains), P. carotovorum (33), P. brasiliense (27), P. atrosepticum (19), P. parmentieri (12), P. polaris (11), P. parvum (3) and P. odoriferum (2). ERIC PCR and phenotypic characteristics revealed high heterogeneity among P. carotovorum, P. brasiliense and P. versatile isolates. Moreover, a subset of the newly isolated strains was characterised by high tolerance to changing environmental conditions such as salinity, pH and water availability. These bacteria can effectively macerate the tissues of various plants, including potato, chicory and orchid. Our results indicate that Pectobacterium strains isolated from internationally traded, symptomless vegetables and ornamental plants have high potential for adaptation to adverse environmental conditions and to infect various host plants. These features may contribute to the success of the genus Pectobacterium in spreading between different climatic zones and facilitate the colonisation of different ecological niches.

13.
Obes Rev ; 23(8): e13455, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35393734

RESUMO

Obesity has evolved into a global epidemic. Bariatric surgery, the most effective treatment for obesity, keeps many comorbidities of obesity at bay for a prolonged period of time. However, complications, including metabolic alterations, are inherent in bariatric surgery. Surgical intervention in the structure of the digestive tract, especially during bariatric bypass procedures, also causes significant changes in the composition of the microbiome, which may affect the composition and quantity of various metabolites produced by intestinal bacteria. The composition of the intestinal microbiome is connected to human metabolism via metabolites that are produced and secreted by bacterial cells into the intestinal lumen and then absorbed into the host's bloodstream. Bariatric surgery causes changes in the composition and quantity of many circulating metabolites. Metabolic disorders may be affected after bariatric surgery by changes in the composition of the microbiome and metabolites produced by bacteria.


Assuntos
Cirurgia Bariátrica , Microbioma Gastrointestinal , Dieta , Humanos , Obesidade/metabolismo , Obesidade/cirurgia , Avaliação de Resultados em Cuidados de Saúde
14.
Int J Mol Sci ; 23(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35457164

RESUMO

Extracellular vesicles (EVs) were isolated from Pectobacterium zantedeschiae culturing media using direct ultracentrifugation (UC), iodixanol cushion ultracentrifugation (ICUC), and iodixanol density gradient ultracentrifugation (IDGUC) techniques. The isolates were characterized with total protein content assay (bicinchoninic acid assay, BCA), nanoparticles tracking analysis (NTA), and capillary electrophoresis (CE). A satisfactory correlation (R2 > 0.94) between quantitative results obtained with BCA, NTA and CE was achieved only for isolates obtained with the IDGUC. The correlation between protein content and CE was proved to be related to the isolates' purity. The NTA was found unable to provide reliable information on EVs quantity in samples isolated with UC and ICUC, due to the co-isolated particulate impurities. Moreover, the work reports polysaccharides, used as culturing media components, as a potential source of bias of quantitation with total protein content assay and NTA. The study demonstrates the advantageous selectivity of CE in quality control of EVs and its ability to differentiate subpopulations of EVs of Pectobacterium.


Assuntos
Vesículas Extracelulares , Nanopartículas , Eletroforese Capilar , Vesículas Extracelulares/metabolismo , Controle de Qualidade , Ultracentrifugação
15.
Front Microbiol ; 13: 765105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35418964

RESUMO

Thermal environments are an important reservoir of thermophiles with significant ecological and biotechnological potentials. However, thermophilic isolates remain largely unrecovered from their habitats and are rarely systematically identified. In this study, we characterized using polyphasic approaches a thermophilic strain, PKUAC-SCTAE412 (E412 hereafter), recovered from Lotus Lake hot spring based in Ganzi prefecture, China. The results of 16S rRNA/16S-23S ITS phylogenies, secondary structure, and morphology comparison strongly supported that strain E412 represent a novel genus within Leptolyngbyaceae. This delineation was further confirmed by genome-based analyses [phylogenomic inference, average nucleotide/amino-acid identity, and the percentages of conserved proteins (POCP)]. Based on the botanical code, the isolate is herein delineated as Leptothermofonsia sichuanensis gen. sp. nov, a genus adjacent to recently delineated Kovacikia and Stenomitos. In addition, we successfully obtained the first complete genome of this new genus. Genomic analysis revealed its adaptations to the adverse hot spring environment and extensive molecular components related to mobile genetic elements, photosynthesis, and nitrogen metabolism. Moreover, the strain was capable of modifying the composition of its light-harvesting apparatus depending on the wavelength and photoperiod, showing chromatic adaptation capacity characteristic for T1 and T2 pigmentation types. Other physiological studies showed the strain's ability to utilize sodium bicarbonate and various sulfur compounds. The strain was also shown to be diazotrophic. Interestingly, 24.6% of annotated protein-coding genes in the E412 genome were identified as putatively acquired, hypothesizing that a large number of genes acquired through HGT might contribute to the genome expansion and habitat adaptation of those thermophilic strains. Most the HGT candidates (69.4%) were categorized as metabolic functions as suggested by the KEGG analysis. Overall, the complete genome of strain E412 provides the first insight into the genomic feature of the genus Leptothermofonsia and lays the foundation for future global ecogenomic and geogenomic studies.

16.
Cells ; 10(12)2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34943919

RESUMO

Cyanobacteria from the genus Arthrospira/Limnospira are considered haloalkalotolerant organisms with optimal growth temperatures around 35 °C. They are most abundant in soda lakes in tropical and subtropical regions. Here, we report the comprehensive genome-based characterisation and physiological investigation of the new strain O9.13F that was isolated in a temperate climate zone from the winter freezing Solenoye Lake in Western Siberia. Based on genomic analyses, the Siberian strain belongs to the Arthrospira/Limnospira genus. The described strain O9.13F showed the highest relative growth index upon cultivation at 20 °C, lower than the temperature 35 °C reported as optimal for the Arthrospira/Limnospira strains. We assessed the composition of fatty acids, proteins and photosynthetic pigments in the biomass of strain O9.13F grown at different temperatures, showing its potential suitability for cultivation in a temperate climate zone. We observed a decrease of gamma-linolenic acid favouring palmitic acid in the case of strain O9.13F compared to tropical strains. Comparative genomics showed no unique genes had been found for the Siberian strain related to its tolerance to low temperatures. In addition, this strain does not possess a different set of genes associated with the salinity stress response from those typically found in tropical strains. We confirmed the absence of plasmids and functional prophage sequences. The genome consists of a 4.94 Mbp with a GC% of 44.47% and 5355 encoded proteins. The Arthrospira/Limnospira strain O9.13F presented in this work is the first representative of a new clade III based on the 16S rRNA gene, for which a genomic sequence is available in public databases (PKGD00000000).


Assuntos
Álcalis/química , Congelamento , Genômica , Lagos/microbiologia , Estações do Ano , Spirulina/genética , Spirulina/fisiologia , Aclimatação , Carotenoides/metabolismo , Clorofila/metabolismo , Ácidos Graxos/metabolismo , Genoma , Fenótipo , Filogenia , Salinidade , Sibéria , Spirulina/isolamento & purificação , Spirulina/ultraestrutura , Estresse Fisiológico
17.
Int J Mol Sci ; 22(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34948170

RESUMO

The high photodynamic effect of the Newman strain of the S. aureus and of clinical strains of S. aureus MRSA 12673 and E. coli 12519 are observed for new cationic light-activated phenosafranin polyhedral oligomeric silsesquioxane (POSS) conjugates in vitro. Killing of bacteria was achieved at low concentrations of silsesquioxanes (0.38 µM) after light irradiation (λem. max = 522 nm, 10.6 mW/cm2) for 5 min. Water-soluble POSS-photosensitizers are synthesized by chemically coupling a phenosafranin dye (PSF) (3,7-diamino-5-phenylphenazine chloride) to an inorganic silsesquioxane cage activated by attachment of succinic anhydride rings. The chemical structure of conjugates is confirmed by 1H, 13C NMR, HRMS, IR, fluorescence spectroscopy and UV-VIS analyzes. The APDI and daunorubicin (DAU) synergy is investigated for POSSPSFDAU conjugates. Confocal microscopy experiments indicate a site of intracellular accumulation of the POSSPSF, whereas iBuPOSSPSF and POSSPSFDAU accumulate in the cell wall or cell membrane. Results from the TEM study show ruptured S. aureus cells with leaking cytosolic mass and distorted cells of E. coli. Bacterial cells are eradicated by ROS produced upon irradiation of the covalent conjugates that can kill the bacteria by destruction of cellular membranes, intracellular proteins and DNA through the oxidative damage of bacteria.


Assuntos
Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Fenazinas/farmacologia , Antibacterianos/farmacologia , Bactérias/metabolismo , Cátions/metabolismo , Membrana Celular/metabolismo , Escherichia coli/efeitos dos fármacos , Fenazinas/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/química , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/efeitos dos fármacos
18.
Int J Mol Sci ; 22(21)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34769009

RESUMO

Antimicrobial blue light (aBL) treatment is considered low risk for the development of bacterial resistance and tolerance due to its multitarget mode of action. The aim of the current study was to demonstrate whether tolerance development occurs in Gram-negative bacteria. We evaluated the potential of tolerance/resistance development in Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa and demonstrated that representative Gram-negative bacteria may develop tolerance to aBL. The observed adaption was a stable feature. Assays involving E. coli K-12 tolC-, tolA-, umuD-, and recA-deficient mutants revealed some possible mechanisms for aBL tolerance development.


Assuntos
Farmacorresistência Bacteriana/genética , Bactérias Gram-Negativas/genética , Antibacterianos/uso terapêutico , Proteínas de Escherichia coli/genética , Luz , Fototerapia/métodos
19.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830459

RESUMO

Bacteria of genus Pectobacterium are Gram-negative rods of the family Pectobacteriaceae. They are the causative agent of soft rot diseases of crops and ornamental plants. However, their virulence mechanisms are not yet fully elucidated. Membrane vesicles (MVs) are universally released by bacteria and are believed to play an important role in the pathogenicity and survival of bacteria in the environment. Our study investigates the role of MVs in the virulence of Pectobacterium. The results indicate that the morphology and MVs production depend on growth medium composition. In polygalacturonic acid (PGA) supplemented media, Pectobacterium produces large MVs (100-300 nm) and small vesicles below 100 nm. Proteomic analyses revealed the presence of pectate degrading enzymes in the MVs. The pectate plate test and enzymatic assay proved that those enzymes are active and able to degrade pectates. What is more, the pathogenicity test indicated that the MVs derived from Pectobacterium were able to induce maceration of Zantedeschia sp. leaves. We also show that the MVs of ß-lactamase producing strains were able to suppress ampicillin activity and permit the growth of susceptible bacteria. Those findings indicate that the MVs of Pectobacterium play an important role in host-pathogen interactions and niche competition with other bacteria. Our research also sheds some light on the mechanism of MVs production. We demonstrate that the MVs production in Pectobacterium strains, which overexpress a green fluorescence protein (GFP), is higher than in wild-type strains. Moreover, proteomic analysis revealed that the GFP was present in the MVs. Therefore, it is possible that protein sequestration into MVs might not be strictly limited to periplasmic proteins. Our research highlights the importance of MVs production as a mechanism of cargo delivery in Pectobacterium and an effective secretion system.


Assuntos
Vesículas Extracelulares/genética , Interações Hospedeiro-Patógeno/genética , Pectobacterium/genética , Sistemas de Translocação de Proteínas/genética , Membrana Celular/genética , Membrana Celular/ultraestrutura , Vesículas Extracelulares/ultraestrutura , Pectobacterium/ultraestrutura , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Sistemas de Translocação de Proteínas/ultraestrutura , Transporte Proteico/genética , Virulência/genética
20.
Int J Mol Sci ; 22(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34639003

RESUMO

Measuring various biochemical and cellular components in the blood is a routine procedure in clinical practice. Human serum contains hundreds of diverse proteins secreted from all cells and tissues in healthy and diseased states. Moreover, some serum proteins have specific strong interactions with other blood components, but most interactions are probably weak and transient. One of the serum proteins is butyrylcholinesterase (BChE), an enzyme existing mainly as a glycosylated soluble tetramer that plays an important role in the metabolism of many drugs. Our results suggest that BChE interacts with plasma proteins and forms much larger complexes than predicted from the molecular weight of the BChE tetramer. To investigate and isolate such complexes, we developed a two-step strategy to find specific protein-protein interactions by combining native size-exclusion chromatography (SEC) with affinity chromatography with the resin that specifically binds BChE. Second, to confirm protein complexes' specificity, we fractionated blood serum proteins by density gradient ultracentrifugation followed by co-immunoprecipitation with anti-BChE monoclonal antibodies. The proteins coisolated in complexes with BChE were identified by mass spectroscopy. These binding studies revealed that BChE interacts with a number of proteins in the human serum. Some of these interactions seem to be more stable than transient. BChE copurification with ApoA-I and the density of some fractions containing BChE corresponding to high-density lipoprotein cholesterol (HDL) during ultracentrifugation suggest its interactions with HDL. Moreover, we observed lower BChE plasma activity in individuals with severely reduced HDL levels (≤20 mg/dL). The presented two-step methodology for determination of the BChE interactions can facilitate further analysis of such complexes, especially from the brain tissue, where BChE could be involved in the pathogenesis and progression of AD.


Assuntos
Proteínas Sanguíneas/metabolismo , Butirilcolinesterase/metabolismo , Proteínas Sanguíneas/química , Butirilcolinesterase/química , Proteínas de Transporte , Centrifugação com Gradiente de Concentração/métodos , HDL-Colesterol , Cromatografia de Afinidade/métodos , Cromatografia em Gel/métodos , Ativação Enzimática , Humanos , Imunoprecipitação , Espectrometria de Massas , Complexos Multiproteicos/química , Complexos Multiproteicos/isolamento & purificação , Complexos Multiproteicos/metabolismo , Ligação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...